
Kharatti Lal Int. Journal of Engineering Research and Applications                             www.ijera.com 

ISSN: 2248-9622, Vol. 5, Issue 12, (Part - 2) December 2015, pp.37-40 

 www.ijera.com                                                                                                                                  37|P a g e  

 

 

 

Fuzzy Group Ideals and Rings 
 

Kharatti Lal 
Dept. of Applied Science – Mathematics Govt. Millennium polytechnic College Chamba Himachal Pradesh – 

176310   (INDIA) 

 

ABSTRACT 
This section define a level subring or level ideals obtain a set of necessary and sufficient condition for the 

equality of two ideals and characterizes field in terms of its fuzzy ideals. It also presents a procedure to construct 

a fuzzy subrings (fuzzy ideals) from any given ascending chain of subring ideal. We prove that the lattice of 

fuzzy congruence of group G (respectively ring R) is isomorphic to the lattice of fuzzy normal subgroup of G 

(respectively fuzzy ideals of R).In Yuan Boond Wu wangrning investigated the relationship between the fuzzy 

ideals and the fuzzy congruences on a distributive lattice and obtained that the lattice of fuzzy ideals is 

isomorphic to the lattice of fuzzy congruences on a generalized Boolean algebra. Fuzzy group theory can be 

used to describe, symmetries and permutation in nature and mathematics. The fuzzy group is one of the oldest 

branches of abstract algebra. For example group can be used is classify to all of the forms chemical crystal can 

take. Group can be used to count the number of non-equivalent objects and permutation or symmetries. For 

example, the number of different is switching functions of n, variable when permutation of the input are 

allowed. Beside crystallography and combinatory group have application of quantum mechanics. 
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I. INTRODUCTION 

One consider the operation of  , , , ˆ ,  . 

One knows that he group is monoid such that each 

element possesses one and only one inverse we shall 

show that the necessary condition for  (X) ,

P «  

to have a group structure is that M = [0, 1] also have 

a group structure for an operation corresponding to 

. We shall see that in any case M = [0, 1] may be 

endowed with a group structure for an operation 0 to 

be defined. Let M = [0, 1] is a vector lattice that may 

be reduced to a single chain forming a total order. We 

consider the operation (min) , (max) , 

(Product) , ̂  (algebric sum),  (disjunctive 

sum).  For each of these operations, one has the 

associative, property and there exists an identity, 

which is, depending on the case, 0 or 1; but it is easy 

to prove that, almost in the same way that for each of 

these operations, there does not exists an inverse for 

each element. 

 

II. Fuzzy Characterization of Regularity 
At the title suggested this section presents necessary 

and sufficient for regularity of ring in terms of its 

fuzzy ideals and fuzzy semiprime ideals. 

Recall that a ring R is regular if, for each element x in 

R, there exists y in R such that xyx = x, 

Theorem (1.1) : A ring R is regular fit, every fuzzy 

ideal of R is idempotent. 

Proof: Let Ring R be the regular and let  be an 

fuzzy ideal of R. That R
2
   is obvious. For the 

reverse inclusion, we first observe that any element x 

of R can be written as x = xyx, where y  R. 

 
2
(x) = sup (min ((a), (b)). 

 x = ab 

 min ((xy)), (x), taking a = xy and b = x 

 Min (H(x), (x) = (x), since  is a fuzzy ideal the 

foregoing arguments yields that   
2
;L  HENCE  

= 
2
. 

Conversely, let  and  be any two fuzzy ideal of R. 

We argue as follows: 

 
2( )(x) ( ) (x)   by the  idempotency 

of   , x  R 

= 
x ab

sup(min(( )(a), ( )(b))


   

x ab

sup(min (a), (a) ( )(x)


     . 

Hence      and the equality follows. The 

regularity of R now at once follows a ring R is 

regular iff  =   , where  and  are any two 

fuzzy ideal of R. 

 

Theorem (1.2): A ring R is regular iff, every fuzzy 

ideal of R is fuzzy semiprime. 

 

Proof: First, we assume that R is a regular and take 

any fuzzy ideal  of R. Let  be any fuzzy ideal of R 

such that 
n
   where n  Z+. The maximum 

theorem implies that n = , and so   . Hence  is 

a fuzzy semiprime. As regards the converse, we 

assume that every fuzzy ideal of R is fuzzy 

semiprime from lemma it follows that. Let A be any 
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nonempty proper subset of a ring R and let x  R. 

Then the following statements are true (i) Im ((¥A)
m
) = 

{0, 1}) and (ii) (¥x)
m
 = ¥xm where m  Z+ since 

(¥x)
2
 = ¥x2

 for any x in R. So that ¥x  ¥x2
. 

Therefore ¥x2
; and hence x  x

2
 

 where x = rx
2
 =  xrx  for some r R 

Thus, R is regular ring 

 

Remarks (2.1): If  is any fuzzy ideal of a Boolean 

ring, then   , since every fuzzy ideal of a 

such ring is fuzzy semiprime. Consequently in any 

Boolean ring-fuzzy maximal ideal, non-constant 

fuzzy prime ideals, non constant fuzzy primarily 

ideals, non-constant fuzzy semiprimary ideals – 

coincide. That is if  is any non-constant fuzzy ideals 

of a Boolean ring R, then we have  is fuzzy 

maximal   is fuzzy prime   is fuzzy primary 

  is fuzzy semiprimary. 

It is worth noting that ¥x x. Therefore ¥x = ¥x2
: 

hence x  x
2
 so that x = rx

2
 = xrx, for some r  R 

thus R is regular permits us to exclude fuzzy 

semiprime ideal from the above chain of equivalence 

because otherwise every non-constant of fuzzy ideals 

of a Boolean ring will be fuzzy maximal. This in turn 

would imply every non-zero Boolean in is a field 

which is blatantly We show this for . Consider a 

pair (a, b)  MM 

M = [0, 1] and such that 0 < a < b < 1. The identity of 

 is 1. Does there exists an a or ab such that 

A  B = 1,  

This is impossible: 

A  b = a < 1 

on the other hand, if one taken M = {0, 1}. One finds 

that a group is possible one finds that a group is 

possible 

                 
  0 1    0 1  

(i) 0 0 0  (ii) 0 0 1  

 1 0 1   1 1 1  

                          

Table (i)                                                    Table (ii) 

 

(i) This is not a group                 (ii)             This is not a group 

 The identity is 1, but:                          The identity is 0, but: 

 0  0 = 0,                   0  0 = 0, 

 0  1 = 0,                   0  1 = 1, 

 1  0 = 0,                     1  0 = 1, 

 1  1 = 1,                       1  1 = 1, 

0 does not have an inverse                     1 does not have an inverse 

  0 1    0 1  

(iii) 0 0 1  (iv) 0 1 0  

 1 1 0   1 0 1  

 

                          Table (iii)                                                  Table ( iv) 

This is a group                This is a group 

The identity is 0                          The identity is one (1) 

The inverse of 0 is 0                The inverse of 0 is 0 

The inverse is 1 is 1               The inverse of 1 is 1 

 

From table does not obtain a group  or . On the 

contrary one does obtain a group if one takes the 

operation .One also obtain group if one considered 

the operation. One also obtain group if one 

considered the operation  inverse disjunctive sum. 

We note that the two groups  and   are 

isomorphic + by permitting 0 and 1; a single group 

may represent the two. It follows from this that if one 

considers any one of the operation 

ˆ,  ,  .,  ,      , and M = [0, 1] one may not give 

(E),

P «  a group structure. It take M = [0, 1], it is 

only with  or what amount of the same things with 

  that one may from a group. We consider as an 

example the ordinary group formed 

 E = {x1, x2, x3} 
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 
   000 001 010 011 100 101 110 111  

  000 000 001 010 011 100 101 110 111  

  001 001 000 011 010 101 100 111 110  

  010 010 011 000 001 110 111 100 101  

  011 011 010 001 000 111 110 101 100  

  100 100 101 110 111 000 001 010 011  

  101 101 100 111 110 001 000 011 010  

  110 110 111 100 010 010 011 000 001  

  111 111 110 101 010 011 010 001 000  

                      

                                                         Table (V) 

 

If one puts abc = {(x1 | a), (x2 | b), (x3 | c)} 

In order to simplify writing with 

a, b, c  {0, 1}, 

One obtain the group represented in table (v), the identity is 000 and each element abc has itself for an inverse. 

This group  (E),

P «  has been represented in the figure: 

 0 1 2 3 4 5 6 7 

0 0 1 2 3 4 5 6 7 

1 1 0 3 2 5 7 7 6 

2 2 3 0 1 6 7 4 5 

3 3 2 1 0 7 6 5 4 

4 4 5 6 7 0 1 2 3 

5 5 4 7 6 1 0 3 2 

6 6 7 4 5 2 3 0 1 

7 7 6 5 4 3 2 1 0 

  

                                                            Table (v i) 

 

By replacing the binary number abc by their 

corresponding decimals. One correctly notices. 

Certain properties (Subgroup, Latin square etc.) these 

properties are very general for these groups 

constructed with  i.e. all the corresponds structures 

configurations of a membership set M, which we 

shall generalize by examining other totally ordered 

configuration for him. 

 

III. FUZZY CONGRUENCE ON 

GROUPS AND RINGS 
Definition: (2.1) A fuzzy equivalence relation q on a 

group G is a fuzzy congruences on G if the following 

conditions are satisfied for all x, y z + in G (G1): 

(xz, yt)  (x, y)  (zx) 

(b) A fuzzy equivalence relation  on a ring is a 

fuzzy ideal on R, if the following conditions are 

satisfied for all x, y, z, t in R (R1) :  (x + z; y +t) 

 (x, y)  (z, t); 

 

Lemma: If   F  (G) and x, y z  G then 

(i) (x, y)   (xy, yz)  (zx, xy) 

(ii) (x
1

, y
1

) = (x, y) 

 

Proof: (x, y) =  (xzz
1

, yzz
1

)  (xy, 

yz)  (z
1

, z
1

) 

i.e. =  (x  z, y  z) 

i.e. =  (x, y) = (z
1
zx; z

1
zy) 

= (z
1

, z
1

)  (zx), (z
*
y) 

= (x, y)  (xy, yz)  (zx, zy) 

 

Point II 

 (x
1

, y
1

)  (xx
1

, xy
1

) 

 (e, xy
1

)  (y, x) = (x, y) 

On the other hand (x
1

y
1

)  (x, y) 

Implies that (x,y)   (x
1

, y
1

). Since x and y are 

arbitrary element  (x
1

, y
1

) = (x, y). 

 

(2.2)  Fuzzy Ideal Generated by a Fuzzy Subset 

Let  be any fuzzy subset of a ring R the smallest 

fuzzy ideals of R containing  is called the fuzzy 

ideals generated by  in R Z x and is denoted by <  

> 

Proposition: Let A be any fuzzy subset of a ring R, 

the ¥A = ¥A  

 

Theorem (2.3): Let  be any fuzzy subset of a ring 

R. Then the fuzzy subset 
*
 of R defined by, 


*
(x) = sup {k | x  k }. 
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In the fuzzy subring (fuzzy ideals) generated in the  

in R is the ideal generated by k in other words 
*
(x) 

= t whenever x  t   and x  s  for all  > t 

 

Proposition: The set of all fuzzy ideals’s of a ring 

R is a complete lattice under the relation .The sup 

and if of any subfamily. 

{i | i   } of fuzzy ideals are  

<  {I | I  } >  {4I | I  } respectively. 

 

IV. Conclusion 
We observe that the notion of fuzzy ideal of ring, 

fuzzy sub–space of a vector space, fuzzy normal 

subgroup of a group, fuzzy subuniverse of a universal 

algebra and fuzzy equivalence fit very comfortably in 

the frame work of our general theory of algebraic 

fuzzy system.  For any set S of sub set of X, we 

written S ϕ  to denote the set S U{ ϕ}.note that S is 

closure set system on X. We discuss a modularity of 

a lattice S and FS. Also we give a method to 

construct a fuzzy S-subset of X, satisfying the certain 

condition s we apply the general theory of fuzzy S 

system to certain cases ,Where s stands for the set of 

all ideals of a ring normal subgroup of a group , 

subspace of a vector space ,sub universal of a 

universal algebra  equivalence relation on a universal 

algebra throughout this paper 1 = ( 1,˄ , ˅, 0,1 ) 

stands for a non – trivial complete, Brouwerian  

lattice i.e a complete lattice satisfying the infinite 

meet distributive law  α ˄  (V β ε M  B )  =  (V β ε M  (α 

˄β )  for all M  is the set of L  and   α ε L ) an L – 

fuzzy subset of X  is a mapping of X into L, if L is a 

unit interval  [ 0, 1] of real number s, there are the 

usual fuzzy subset of X originally  introduced by 

Zadeh in pioneering work [1 6]. 
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